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Abstract

Mahalanobis distances are almost nine decades old and are extensively used in many areas of multivari-
ate statistics. But there are surprisingly recent results for classical sample-based Mahalanobis distances
to the centre or between individuals, such as data-independent sharp upper bounds and the fact that
they become uninformative when the sample size is less than, or equal to, the number of variables plus
one. It is argued here that an alternative representation of an n X p data set in the ‘space of variables’
that associates an axis with each of the n individuals and each variable with a vector in R", provides an
alternative setting where Mahalanobis distances have a precise geometric interpretation and where these
recent results become obvious. It is shown that this setting also suggests a natural scaled Mahalanobis
distance, in the interval [0, 1], which does not depend on distributional assumptions and can be used to
measure the severity of an outlier. Furthermore, a direct connection is demonstrated between Maha-
lanobis distances and linear regressions of certain dummy vectors in R” on the p variables in the dataset,
implying that standard linear regression subset selection algorithms will identify variables that are most
responsible for large Mahalanobis distances, thereby assisting in the interpretation of outliers. Examples
are discussed. Results are extended to Mahalanobis distances of the mean of a group of individuals to
the centre or between means of two groups.
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1 Introduction

Ever since Mahalanobis (1936) introduced his “generalized distances in Statistics”, they have been used
extensively in Multivariate statistics. Mardia (1977) wrote that “Mahalanobis distance has become one of
the most fundamental concepts in Multivariate Analysis”. The emergence of robust alternatives, driven by
concerns that include the so-called 'masking effect’ by severe outliers (Barnett & Lewis, 1994) does not
deprive classical Mahalanobis distances (MDs) of their importance. Population or sample-based variants
of classical Mahalanobis distances are used (Anderson, 1958) in the definition of the multivariate Normal
density function, in multivariate inference (Hotelling’s T? statistic), in discriminant analyses, as well as in
outlier detection (Barnett & Lewis, 1994), among other important areas. Despite their long history, some
fundamental properties of classical sample-based Mahalanobis distances have only recently been discovered.
Following preliminary results by Olkin (1992) for univariate and bivariate data, Gath and Hayes (2006)
obtained sharp bounds for the largest sample Mahalanobis distance of an individual to the centre in a
multivariate data set, that depend only on sample size and not on the data as such. Branco and Pires (2011)
determined a similar data-independent sharp upper bound for sample Mahalanobis distances between pairs
of individuals and proved that in the increasingly common situation where the number n of observations in
the data set is less than or equal to p + 1, where p is the number of variables, sample-based Mahalanobis
distances are, in the absence of additional multicollinearities, always equal to their upper bounds, regardless
of the data values — and are therefore uninformative.

It is shown in Sections 3 and 4 that these results have a natural geometric explanation when the traditional
representation of the data set defined by an n x p data matrix X and its column-centred counterpart X., as
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n points in RP?, is replaced by the alternative representation in R™, often called the space of variables. In this
latter representation, each observed individual is associated with an axis of n-dimensional Euclidean space
and each observed variable defines a vector in that space, as discussed in Section 2. Mahalanobis distances of
an individual to the centre depend only on the sample size and on the inclination of the subspace spanned by
the columns of X, C(X,), in relation to the axes of R™. This fact, which is extensively explored here, lies at
the geometric heart of the results by Gath and Hayes (2006) and Branco and Pires (2011). It also provides
a direct link between MDs to the centre and the coefficient of determination of the multiple linear regression
of the canonical vector for each axis of R™ (i.e., for each individual) and the p variables in the dataset
(columns of X). This coefficient of determination is the MD scaled to the interval [0,1], thus providing a
natural indicator for the severity of outliers which does not depend on any probabilistic assumptions about
the population from which the sample was selected. Similar results hold for MDs between two individuals
and the values of the coefficient of determination R? in the linear regression of the difference between their
canonical axis vectors on the p variables in the dataset.

Standard variable selection methods may be applied to identify the best subsets of predictors in the above
linear regressions. In this way, it is possible to identify subsets of variables that are most responsible for the
value of any given MD, and thus to interpret outliers in terms of smaller subsets of the original variables.
These procedures are discussed in Section 5 and three reproducible examples are provided.

Section 6 extends these ideas to Mahalanobis distances involving the vectors of means for groups of
individuals. Finally, Section 7 discusses some further implications of these results.

2 Notation and preliminaries

Let X represent an n X p data matrix, with variables defining columns and observations (individuals) defining
rows. Denote the i-th row of matrix X by i’fi]. Let m be the p-dimensional vector of variable sample means

and X, the nx p column-centred data matrix, whose i-th row is the vector (X — m)¢. The sample covariance

matrix is then S = ﬁXéXC Two classical sample-based Mahalanobis distances (MDs) are the Mahalanobis
distance of individual i to the centre:

di = (X —m)'S™ (X —m) (1)
and the Mahalanobis distance between individuals i and j:
diy = (R —X)'S™ Ry — %) (2)

In keeping with standard usage we call them distances although they are, in fact, squared distances.

The above definitions can be re-written using the matrix of orthogonal projections on the subspace
C(X,.) C R" spanned by the columns of X, i.e., matrix P, = X .(X!X.) " 'X%. In fact, denote by &; the i-th
canonical vector of R™, that is the vector with a single non-zero element, a 1 in position 7. Pre-multiplying

1
X, by € extracts the i-th row of matrix X.: €/X.= (X —m)". Hence, d} = &'X, (ﬁXiXQ Xle, =

(n-1) €{P€;. Likewise, (X};) —X[;))" = (€;—€;)'X,, where €; is the j-th canonical vector of R"™. Hence,
dfj = (n—1) (€; — €;)'"P.(€; — €;). Denoting the (4, j)-th element of the matrix of orthogonal projections P,
by p;; we can further write (Puntanen, Styan, & Isotalo, 2011, eq.8.16) the MD to the centre as:

d? = (n-1)8Pc& = (n-1)pi (3)

(3

and the Mahalanobis distance between individuals ¢ and j as:
& = (-1 (€ — &)'Pe(€ — &) = (1) (pii +pj; — 2pij) = di +dj —2(n—1)p; (4)

If the sample covariance matrix S is not invertible (which always happens when n < p), the matrix
inverse S™! in equations (1) and (2) can be replaced by the Moore-Penrose generalized inverse S~ and the
orthogonal projection matrix by P, = X .(X!X,.)”X!. Expressions (3) and (4) remain valid.
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Also considered is the n x (p+1) matrix X,, that results from binding to matrix X a first column of n
ones, the vector fn, so that X,,, = [fn : X] This augmented matrix is the model matrix for a multiple

linear regression of any response variable on the p predictors given by the columns of X. Its associated
matrix of orthogonal projections is the linear regression “hat matrix”, H = X,,,(X¢, X,,,)71X? .

As is well-known, the matrices P of orthogonal projections onto subspaces of R™ are the n x n symmetric
(P* = P) and idempotent (PP = P) matrices. An orthogonal projection matrix P projects onto its column
space, C(P), which is a trace(P)-dimensional subspace of R", whereas matrix I, —P, with I, the n x n
identity matrix, orthogonally projects onto the orthogonal complement C(P)-. The subspace C(P) is the
subspace of vectors that remain invariant under the application P, i.e., such that Py = ¥.

The orthogonal projection of any vector ¥ ¢ C(P)L onto C(P) defines a right triangle and the cosine of
the angle between ¥ and its orthogonal projection P¥ is the ratio of the norms of Py and y: cos(y,Py) =

“‘?T‘” = ’;};’7. Extending this relation to any non-zero vector ¥ € R™, the squared cosine of the angle

between ¥ and its orthogonal projection P¥ is the Rayleigh-Ritz ratio (Horn & Johnson, 1985) of matrix P,
with vector ¥:

o IPF2 Py
cos?(7,Py) = | 2 = V03 (5)

Two particularly important subspaces of R™ are C(1,), the one-dimensional subspace spanned by the
vector of n ones, 1,,, and its orthogonal complement, C(1,)", that is, the subspace of all vectors of R™ that
are orthogonal to 1,, i.e., whose elements add to zero. The matrix of orthogonal projections on C(1,) is

matrix Py =1, (1,1,)7'1% = 11,1, all of whose elements are L. The matrix of orthogonal projections

(L,
(1n

on C(1,)%, I, — Py , centres any vector ¥ € R", in the sense that y* = (I, —Pj; )¥ has as its i-th element
y; — Y, where y; is the generic element of vector y and 7 is the arithmetic mean of those elements.
Orthogonal projections onto nested subspaces of R™ have interesting properties. If M C N C R™ are two
nested subspaces and P, and P, their respective matrices of orthogonal projections, then P,,P, = P, P, =
P, and P, —P,, is the matrix of orthogonal projections onto the subspace N'N M+ C R™ (Puntanen et al.,

2011, Prop.7.1). This last result, together with equation (5), directly imply that

0052 (§7 PMS;) = COS2 (yv PN y) - C082 (377 (PN _PJVI)S;) . (6)

-2 =12 =12
Furthermore, and since cos?(¥, P, ¥) = ”ll)‘]gi’z‘l = H(l‘)f%jg-ﬁg” . Hl@ﬂ;” = cos® (P, ¥, P, (P,y))-cos’(y, Pyy) =

cos?(P,y, P, ¥) - cos’(¥, P, ¥), we have:
cos’(¥,P,¥) = cos’(¥,By¥) - cos’(By¥,B,¥) < cos?(F,B¥). (7)

Linear regressions are, in linear algebraic terms, orthogonal projections of a response variable y € R"”
onto a subspace spanned by the predictor variables and the vector fn, ie., onto C(X,,). The orthogonal
projection matrix onto C(Xy,) is the “hat matrix” H = P¢ + Py , where Pc and Py are the matrices
of orthogonal projections onto, respectively, C(X.) = C(X,,) N C(1,)* and C(1,,) (Puntanen et al., 2011,
p.157). It is therefore straightforward to show that the coefficient of determination of the multiple linear
regression of a response variable y € R™ on the p variables is the squared cosine of the angle between the

centred vector ¥* = (I, —P; )¥ and either subspace C(X,,) or C(X,):
B2 = cos?(§, Hy") = cos?(§", Pe”) . ®)

In fact, the coefficient of determination in a linear regression is defined as the ratio of regression and total

sum of squares, where SSR = |Hy*||? and SST = ||¥*||?>. Hence, R? = 5’;%{ = cos?(y*, Hy*). However,

VHHY* =7 (PAP; )" =P F*+y*'P; §*. Since the latter term is zero, R?= Y;?j;?* =cos?(y*, Pcy™).




32 Journal of Statistics and Computer Science

3 Mahalanobis distances to the centre

Proposition 3.1 Let X be an nxp data matriz, X.=(1,~Py; )X its column-centred counterpart and C(X.)
the column-space of X.. Let €; be the i-th canonical basis vector of R" and € = (Ianin)é} its column-
centred counterpart, whose i-th element is 1—% and all other elements are —%. The classical Mahalanobis
distance of individual i to the centre, d?, is given by:

1. d? = (n—1) cos® 8;, where 8; is the angle between &; and the subspace C(X,).

2
2. d? = @ cos? 0F, where 07 is the angle between &' and the subspace C(X.).

2
8. d? = % R2, where R? is the coefficient of determination of the multiple linear regression of canon-

ical vector €; on the p columns of X.

Proof

1. The result follows directly from equations (3) and (5), since &.€; = 1.

2. Any linear combination of the columns of matrix X, must be centred (that is, its elements must add to
zero), hence C(X.) C C(1,)1. Vector & is the orthogonal projection of &; onto C(1,,)+. By equation
(7), with M=C(X,) and N'=C(1,,)*, we have cos?0; = cos?(&;, P.&;) = cos?(&;,&}) - cos? (&}, P.&,;).

k(12 2
The first factor is ||“eéj ”2 = ||&7]|* = 2=L. Thus, d? = (n—1)cos?6; = @ cos?(€F,P.€;). Since
C(X,) C C(fn)J-, we have P, = PC(In*PIn)' Hence, P.€; = Pc(Ianin)é} = P.€! and therefore

cos? (€F, P.&;) =cos?(&,P.&})=cos? 7.

3. From equation (8) the coefficient of determination in the multiple linear regression of €; on the columns
2
of X is R? = cos?(8,P.&;). Hence, d? = "1 R? as was to be shown.

These characterizations show that Mahalanobis distances to the centre are angular measurements in R",
reflecting the inclination of the subspace C(X,) in relation to the coordinate axes of R" or to the orthogonal
projection of those axes onto C(IH)J-. The smaller the angle that any given axis forms with the subspace
C(X.), the larger the MD to the centre of the individual associated with that axis.

Gath & Hayes’ sharp upper bound for any Mahalanobis distance to the centre, d7 < @ (Gath &
Hayes, 2006, Theorem 2.1), follows directly from point 2. This bound does not depend on the data, but
only on the sample size n. The upper bound can be re-written as @ =n—-2+ % which, for large n, is
approximately n — 2. The characterization in point 1, d? = (n—1) cos® §;, does not provide a sharp bound,
because angle 6; is the angle between €; ¢ C (In)L and its orthogonal projection onto a subspace to which it
does not belong, the subspace C(X.) C C(In)l. Thus, cos? ; must always be strictly less than 1.

It is useful to define a scaled version of the Mahalanobis distance to the centre, necessarily in the interval
[0,1], which can be used as an indicator of the severity of any observation as an outlier, regardless of
probability distributions.

Definition 3.1 Let X be an n x p data matriz and X, its column-centred counterpart. Let d? be the
Mahalanobis distance to the centre of observation i. Define the scaled Mahalanobis distance to the centre of
observation i as:

s? = -t = cos’0f = R?, (9)

M

where M = @ is the largest possible MD to the centre for this dataset; 07 is the angle between the i-th
centred canomnical vector & and C(X.); and R? is the coefficient of determination of the multiple linear
regression of the i-th canonical vector €; on the p variables in the dataset.
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For a dataset from a Multivariate Normal distribution, Johnson and Wichern (2007, p.184) state that
sample-based Mahalanobis distances d? to the centre approximately follow a X?; distribution, for large n
and n — p. Furthermore, Morrison (1990, p.177, eq.3) indicates that the following transformation follows an
Fy n—p—1 distribution:

(n—p—1)nd?

F = .
p(n—1)2 — npd?

(10)

Simple algebra shows that F' in equation (10) is the standard linear regression goodness-of-fit F' statistic

=P 722, for the regression of the canonical vectors in R™ on the p variables in the dataset, since by
n ;7 1 1RR
point 3 of Proposition 3.1, we have R? = (nc_lzl>2 , the scaled MD to the centre of observation i. Morrison

(1990, p.178) provides an asymptotic distribution for scaled MDs to the centre, stating that if the value of
the F statistic in equation (10) is beyond the range of the available F' tables, the statistic u= ﬁ d? can

be referred to tables of the incomplete beta function, with a=2 and b= "_Tp_l.

Proposition 3.1 shows that an MD to the center attains its maximum value M if and only if
&’ belongs to C(X.) or, equivalently, iff R? =1, in which case &; is a linear combination of the columns of
matrix X,,. Thus,

_ (n-1)?

E=M & §eclCX,n o & clX) (11)

The first equivalence can be re-written as:
d72 = M = éz = boin+b1i1+b2i2+...+bp)zp, (12)

for some set of real coeflicients by, b1, ...,bp. This means that there is a linear combination by X; + by X +
... +b,X, of the p columns of matrix X that perfectly discriminates individual ¢ (with coordinate 1—by)
from the remaining n—1 individuals (with common coordinate —bg) — see also Pires and Branco (2018).
This result can be slightly relaxed, taking into consideration point 3 of Proposition 3.1. An individual
with d? < M (i.e., R? < 1) will, on the discriminant axis by X; + by X2 + ... + b, X, defined by the linear
regression of &; on the p predictors, have coordinate (1—by)—r; where r; is the (usual) regression residual
of individual 4. Any other individual j # ¢ will, on the same axis, have coordinate —by—r; where r; is the

. . . nor? .
corresponding regression residual. We have R? =1- ESTI;: =1-— == gince the total sum of squares in

this regression is SST = [|€;||*> = “=1. Thus, the MD to the centre of individual i can also be written as

n n
d?= @—(n—l) '21 r# and the sum of squared residuals is '21 ry =21 {1 - d—;f} An individual with d?
close to the upper 1éound M must therefore have all regressiorjl residuals 7; close to zero, and will therefore
be well separated from the remaining individuals on the discriminant axis.

Alternatively, equation (12) can be interpreted in RP?, since it implies that individual ¢ is at the maximum
Mahalanobis distance from the center if and only if, for all j # ¢, we have bo+b1 z1,, +b2 x2 ;) +...4bp Tp ;) =0,
i.e., the n—1 points X[;; € R? (j#1) belong to the hyperplane in R? of equation bo+by x1+bs 2o+...4+b, 1, = 0.
This is the result in Corollaries 2.2 and 2.3 of Gath & Hayes (Gath & Hayes, 2006).

The mean of all MDs to the centre is, from equation (3),

_ 1 <& 1 n—1
P2 = = Zd2 = E(n—l)trace(Pc) = T, (13)

i
i=1

where r is the dimension of the subspace C(X,). Since the maximum of a set of n numbers is no smaller than

their mean, and equality exists iff all n numbers are equal, the largest MD to the centre verifies the inequality

max d? > an r (for large n, approximately r), with equality iff all n individuals share this smallest possible
3

maximum MD. This is the result in Gath & Hayes’s Theorem 3.1 and Corollary 3.2 (which assumed r = p).
Geometrically, this is equivalent to stating that subspace C(X,.) forms equal angles with all n axes in R™.
Gath & Hayes point out that this is only possible for certain combinations of n and r.
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The results by Pires and Branco (2018) for n < p + 1 follow directly from point 3 in Proposition 3.1. In
fact, rank(X,,) < min{n,p+ 1}. If n < p—+ 1, and assuming that there are no further linear dependencies,
then dim(C(X,,)) = n. But since C(X,,) € R”, this implies that C(X,,) = R™. Hence, all canonical vectors
of R™ belong to C(X,,), implying that all individuals are at the maximum Mahalanobis distance to the
centre, regardless of the data, thus making sample MDs to the centre uninformative in this context.

The following Proposition implies that the Mahalanobis distance to the centre of a given individual
cannot increase if one or more of the p variables is dropped.

Proposition 3.2 Let X be an n X p data matriz and X, its column-centred counterpart. Let Xg be a data
matriz on the same individuals, such that the column-space of its column-centred counterpart is contained
in the column-space of X, i.e., C(Xs,) C C(X.). Let d? and df(s) be the MDs to the centre of individual i,
based on matrices X and Xg, respectively. Then,

2 2
1. d; ) < < dz.
PP 2
2. d2 > HllaX z”, where zgj M 1s individual i’s squared value on the j-th standardized variable.
j= j

3. d? — df(s) = (n—1)cos? ¢; = (n— 1) cos? ¢F, where ¢; and ¢} are the angles between, respectively, €;
and &¢, and their orthogonal pm;ectmns onto C(X.) NC(Xs, )t

Proof

1. Since C(Xs,) € C(X.), the inequality in (7) implies that cos?(€;,Ps_€;) < cos?(€;, P.€;), where Pg_

Sc g
is the matrix of orthogonal projections onto the column-space of Xs_. It follows directly from point 2

of Proposition 3.1 that d7 ) < d7.

2. For a subset with the single variable j, the MD of individual i to the centre is, by definition, the squared

value, on the scaled variable j, for individual i: (x”s;xj) (Gath & Hayes, 2006). By the previous point,
J
d? is no smaller than all such univariate MDs.

3. From equations (3) and (5), d2—d22( )= (n—1)[cos?(&;, Pc€;)—cos?(&;, Ps,&;)]. But since C(Xs,) C C(X),
equation (6) implies that d?—d? (s) = = (n—1) cos?(&;, (P.—Ps,)&;), where matrix P.—Py_ is the matrix
of orthogonal projections onto C(X.) NC(Xs_)*. This proves the first equality. The second equality is
proved analogously to point 2 in Proposition 3.1.

Proposition 3.2 implies that the a given individual’s MD to the centre can never increase when subsets

of the original variables are discarded. It also implies that d? = df( ) if and only if P.€; = Pg_€;, i.e., iff €;

belongs to the orthogonal complement of C(X.) NC(Xs, )+

4 Mahalanobis distances between individuals

Similar results can be obtained for sample-based MDs between individuals.

Proposition 4.1 Let X, X., P. and X,,, be defined as in Section 3, and €; (€;) represent the i-th (j-th)
canonical basis vector of R™. The classical Mahalanobis distance between individuals i and j, defined in
equations (2) and (4) is given by:

1. d2 =2(n—1) cos? 0;;, where 0;; is the angle between &; — &; and the subspace C(X,.);

2. d = 2n—1) R},

ij» where sz is the coefficient of determination of the multiple linear regression of
vector €;—€; on the p predictors defined by matriz X.

3. dZQJ :2(7171) = é‘i*é’j EC(XC) & g 761' GC(Xm)
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Proof
1. The result follows directly from equations (4) and (5), since the norm of vector &;—&; is v/2.

2. Since vector €; — €; € C(fn)L (its elements add to zero), equation (8) implies that the coefficient of

determination in the multiple linear regression of €; — €; on the variables defining matrix X is given
2 2/ — - —
by R;; = cos (6;—€;,P.(€,—€;)).

3. From point 1 above, the maximum value dfj = 2(n—1) is achieved iff €;—€; € C(X.). From point 2,
we also have the maximum dfj iff €;—¢€; is an exact linear combination of the columns of matrix X,,.

In these characterizations, vector €;—€; plays the role of both vector €; and vector €] in Section 3. Since
vector & —&; belongs to C(1,,)*, it may also belong to the target subspace C(X.). The bound d3; <2(n—1),
given in Branco and Pires (2011) results directly from point 1 above. It is a sharp bound, since point 2
implies that the maximum value for d; is achieved when &—€; € C(X,,). A consequence of the equivalences
in point 3 is that if df; = d3, = 2(n—1) (for k # i) then it must also be the case that df, = 2(n—1),
since €;—€; € C(X,,) and €; -6, € C(X,,) implies that € —€;, € C(X,,). The results by Branco and Pires
(2011) regarding the situation rank(X,,) = n < p + 1, are again a direct result of the fact that, in this
case, C(X,,) = R", so that all differences €; — €; (i # j) are vectors in C(X,,). Hence the maximum MD
d?j = 2(n — 1) is attained, regardless of the data, for any pair (¢, j) of individuals. MDs between individuals
are also uninformative in this case.

The results in Proposition 3.2 can be adapted to the context of this Section. In particular, MDs between
a given pair (4, j) of individuals form a non-increasing sequence along a set of ever-smaller nested subspaces.

It is also possible to define a scaled Mahalanobis distance between individuals, as in Definition 3.1:

+;» with the notation of Proposition 4.1. This scaled MD must belong to the interval [0, 1].

2 o020, —
s;;=cos“b;; =R

5 Variable selection for Mahalanobis distances

The results in Sections 3 and 4 suggest an algorithm for identifying subsets of variables than are mostly
responsible for the value of a given MD, thereby highlighting the causes for large MD values. This procedure
is illustrated in this Section, for MDs to the centre.

1. select an individual i whose MD to the centre d7 is of interest (usually one of the largest);

2. perform the multiple linear regression of the i-th canonical basis vector €; € R™ on the p predictor
variables defined by X;

3. use any standard method of selecting a k-variable subset S of predictors that preserves an acceptable
proportion 7 of the original coefficient of determination R?.

Point 3 in Proposition 3.1 guarantees that the k variables in subset S define an n x k data matrix Xg
in which individual 7 has MD to the centre 7 d?. In other words, the k variables in S account for 7 x 100%
of the original MD to the centre of individual 4. This reduction in dimensionality makes it easier to assess,
interpret and possibly visualize the causes of large values of d?.

The above procedure is illustrated with three examples, using R (R Core Team, 2021). The three datasets
are from the University of California’s UCI Machine Learning Repository (Dheeru & Karra Taniskidou,
2017, http://archive.ics.uci.edu/ml). Mahalanobis distances were calculated with the mahalanobis function
in the stats package, which is part of the standard distributions of R. Subset selection of predictors in
the linear regressions was carried out using the subselect R package (Orestes Cerdeira, Duarte Silva,
Cadima, & Minhoto, 2023), details of which are given in the package vignette. Package subselect provides
function eleaps that guarantees the identification of the best subsets for each cardinality, based on Furnival
and Wilson’s efficient leaps-and-bounds algorithm (Furnival & Wilson, 1974; Duarte Silva, 2001, 2002).
This function is computationally feasible for datasets with up to approximately p = 30 variables. For
larger datasets, subselect also provides functions with heuristic algorithms (functions anneal, genetic
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and improve), that can be used to seek the optimal subsets of predictors. See Cadima, Cerdeira, and
Minhoto (2004) for further details.

The graphs shown below and the results for the optimal subset selections were obtained with a simple R
function, xploremaha, which is shown in Appendix A to ensure reproducible examples. Function xploremaha
requires as input arguments the data frame with the dataset and the rank of the Mahalanobis distance to
the centre that is to be explored. If the number of variables in the dataset is less than or equal to an
argument switch (by default 30), function eleaps is invoked to carry out a full search of optimal subsets,
otherwise function anneal will provide a heuristic solution based on a simulated annealing algorithm. The
output argument is a list with the best subsets (for all cardinalities) in component bestsets, as well as
their corresponding scaled MD (bestvalues), which represents the proportion of the MD’s upper bound
(n—1)2/n that is associated with each subset. By default, xploremaha also produces a plot of the selected
individual’s MDs to the centre, for each of the identified best subsets, for all cardinalities from 1 to p—1.
This option may be turned off by setting the input argument plot to the logical value FALSE.

5.1 Example: the abalone data

The abalone dataset was contributed to the UCI Repository by Nash, Sellers, Talbot, Cawthorn, and Ford
(1994), from the Marine Research Laboratories in Taroona, Australia. The data set has a moderately large
number of individuals, with observations on n=4177 abalone sea snails. Of the nine original variables, one
(sex) was categorical and has been excluded, with the remaining p = 8 numerical physical measurements
labelled V2 to V9. The largest MD to the centre is d3,5,=2120.615, which is approximately one half of the

upper bound @ =4175, and much larger than the mean MD to the centre, %p:7.998 (equation 13).
The 0.9999 quantile in a x2 distribution is 31.83, providing another benchmark to state that observation
2052 is a very severe outlier. Figure 1, which was created with the command xploremaha(data=abalone,
rank=1), shows the Mahalanobis distances of observation i =2052 to the centre (vertical axis) for the best
variable subsets of all cardinalities from 1 to 7 (horizontal axis). Beneath each point is the proportion of
the original MD retained by these best subsets. As can be seen, three variables are sufficient to capture the
main reasons for such a severe outlier, and even two variables will display the essence of the outlying nature

of this observation, retaining 90% of its MD to the centre.

. . . .
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Figure 1: Mahalanobis distances of observation ¢ = 2052 to the centre for the best variable subsets of all
cardinalities from 1 to 7.

With the help of the eleaps function in package subselect (which is invoked by function xploremaha),
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the two optimal variables were identified as the variables V3 (diameter) and V4 (height). The scatterplot
of all n=4177 observations on these two variables is shown in Figure 2. Observation 7= 2052, which has
the largest MD to the centre using all p=_8 variables, is the triangle at the top of the plot. As can be seen,
individual 2052 is a univariate outlier on variable V4 alone, but Figure 1 tells us that we would lose over
two-thirds of its MD to the centre by focusing only on variable V4 and ignoring the pattern of the scatterplot
associated with both V3 and V4. The values for variable V4 suggest that a decimal point may have been
mis-placed when recording the height of individual 2052 (which is given as 1.130, whereas 99.95% of the
values are no larger than 0.250).

The other outlying point in Figure 2 is individual ¢=1418, represented by the square at the centre-right
of the plot. This individual’s MD to the centre with all p=8 variables is the third largest in the dataset, at
d3,15=222.201 (5.3% of the upper bound). A plot similar to Figure 1 for this individual (not shown) would
reveal that almost 88% of this MD is preserved by only two variables, again V'3 and V4, and in this optimal
bivariate data set the MD to the centre of individual 1418 is 194.760.

V4
0.6 0.8 1.0
| |

0.4

0.2

0.0

V3

Figure 2: The scatterplot of the abalone observations on variables V3 (diameter, in mm) and V4 (height,
in mm).

The second largest MD to the centre in the abalone dataset is for individual 1211, with d%,;; =250.739,
which is 6.0% of the upper bound, but still much larger than the 0.9999 quantile on a x2 distribution (31.83).
Once more, two variables suffice to capture most of this Mahalanobis distance to the centre, but the optimal
variables in this case are V2 and V3. The plot on the left in Figure 3, which was created with the command
xploremaha(data=abalone, rank=2), shows the MDs to the centre for individual ¢ =1211, with the best
variable subsets of all sizes from 1 to 7, as well as the proportion of the original MD that is retained. The
plot on the right in Figure 3 is the best two-variable scatterplot, with variables V2 (length, in mm) and V'3
(diameter, in mm), which preserves almost 95% of this individual’s MD to the centre in the full dataset.
In this bivariate plot, individual 1211 is the triangle at the centre-left, with MD to the centre 237.830.
Individuals 2052 and 1418, with the largest and third largest MDs in the full dataset, are not identifiable in
this scatterplot.
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Figure 3: On the left, Mahalanobis distances to the centre of individual 1211 for the best smaller-cardinality
subsets of the abalone dataset. On the right, the bivariate scatterplot which best highlights this individual’s
MD to the centre.

5.2 Example: the SPECTF heart data

A second dataset from the UCI Repository is the SPECTF dataset, with features from the Single Proton
Emission Computed Tomography (SPECT) cardiac images of n = 267 patients (the training and the test
subsets were merged for our purposes). This data set was contributed to the UCI Repository by L.A. Kurgan
and K.J. Cios of the University of Colorado at Denver (Kurgan, Cios, Tadeusiewicz, Ogiela, & Goodenday,
2001). The first, binary, variable was excluded and the Mahalanobis distances were computed using the

remaining p=44 continuous variables. The upper bound for MDs to the centre is (n=1)? =265.0037, and the

mean MD is w =43.835, a relatively large value because p is large relative to n—1. The 0.9999 quantile
in the x3, distribution is 87.68.

The largest MD to the centre is for individual 238, with d3;5 =206.93. As the number of variables is large
(p>30), the xploremaha function invokes the anneal heuristic search function of R package subselect to
search for subsets of variables that preserve most of this MD to the centre. The number of iterations of the
algorithm was set to niter=50000 and computation times (as measured with R’s system.time command)
were of the order of 75 seconds on a HPZ2 Mini G3 workstation with 16GiB memory. The left plot in
Figure 4 gives the results for the selected subsets of all cardinalities k from 1 to p—1=43. This plot was
produced with the command xploremaha(SPECTF, rank=1, niter=50000). Although with a substantial
loss, a three-variable subset will still give, for individual 238, an MD to the centre of 119.638 (about 58%
of the original MD). The best three-dimensional scatterplot, as indicated by function xploremaha, uses
variables V28, V32 and V33. With the help of the R function plot3d, in package rgl, a three-dimensional
plot of these variables can be rotated to highlight individual 238 (Figure 4, right plot). Individual 238 is the
isolated point near the bottom-left of the plot. Its MD to the centre in this 3D plot is 119.638, approximately
58% of the original MD. It should be stressed that, due to the random nature of the simulated annealing
search algorithm, these results can change at each run of the anneal function.

5.3 Example: the ISOLET speech data

A third dataset is ISOLET (Isolated Letter Speech Recognition), contributed to the UCI Repository by Tom
Dietterich of the Department of Computer Science at Oregon State University and discussed by Ron Cole
and Mark Fanty at the Oregon Graduate Institute (Fanty & Cole, 1991). This example shows how the
proposed methodology may be useful even for datasets with a fairly large number of variables. The ISOLET
dataset has n="7797 speech records and, originally, 618 measurements. Four binary variables were excluded
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Figure 4: The left plot gives the MDs to the centre of individual 238 in the SPECTF dataset, for the selected
subsets of k<44 variables. The right plot shows the best 3D scatterplot, using variables V28, V32 and V' 33.

(variables V578, V579, V580 and V585) and p=614 numerical variables were used. Mahalanobis distances
to the centre were computed for each speech record (a computationally light task). The upper bound for

MDs to the centre is @ =7795, and the mean MD is @ =613.92 (which is also a lower bound for
the largest MD to the centre). The 0.9999 quantile in the x2,, distribution is 728.01.

Individual 219 has the largest MD to the centre, with d3;9 = 3092.1352, corresponding to a scaled MD
of 0.3967. The large number of variables is computationally demanding even for heuristic algorithms, if all
possible cardinalities of subsets from 1 to p—1 are searched. It is, however, feasible to look for subsets of
only a few smaller cardinalities, by invoking the xploremaha function (hence the anneal function of package
subselect) with the optional arguments kmin and kmax, specifying a range of subset cardinalities that is
to be explored. An example of the use of the command to select subsets of all cardinalities from 1 to 20 is
shown below. Given the large number of variables (p=614), the optional force=TRUE argument is used to
force the anneal function to run. The command ran in less than 40 seconds of system time.

> xploremaha (ISOLET, rank=1, kmin=1, kmax=20, force=TRUE)

Given the random nature of the simulated annealing algorithm, the selection of the optimal subsets for
each cardinality is not guaranteed. This is evident in the left plot of Figure 5, where the selected subset
with 7 variables has a lower MD than the selected subset of cardinality 6, a situation which cannot happen
with the optimal subsets (Proposition 3.2). For this reason, it is advisable to run the search algorithm more
than once. A subset of size k =20 which retains over half the original MD has been found, with scaled
MD 0.2030. This subset has less than 3.5% of the original variables but retains 51.2% of the MD value.
Since a reasonable subset with 20 variables has been identified, the xploremaha command can now be run
on the resulting 7797 x 20 sub-matrix of ISOLET, which will invoke the eleaps command for a guaranteed
complete search of subsets of lower cardinality. The result is shown on the right-hand plot of Figure 5. The
proportions indicated beneath each point on this right plot are relative to the MD to the centre of individual
219 on the selected 20-variable data subset, d§19[20] =1582.961.

Alternatively, a standard stepwise selection method, such as backward elimination, for the linear regres-
sion of the i-th canonical vector of R™ on the p variables provides a computationally lighter algorithm to
search for good subsets of the predictors that retain a large proportion of the original MD to the centre of
individual 4.
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Figure 5: On the left, selected Mahalanobis distances to the centre of individual 219 in the ISOLET dataset,
for variable subsets of cardinalities 1 to 20. These MD values are non-monotone because the heuristic search
algorithm does not guarantee optimal solutions. The sub-matrix of the 20 variable-subset that was selected
in this first step was then subjected to a full search of subsets of smaller cardinality, with the resulting plot
shown on the right.

6 Mahalanobis distances involving means of groups of individuals

Previous results can be generalised to MDs involving the mean vectors of subgroups of individuals. Thus, if
m, is the vector of p means of the n; observations of a subgroup I, we can define the sample Mahalanobis
distance of group I to the centre as:

d% = (rﬁf - Iﬁ)tsil(rﬁf - Iﬁ) ) (14)
and the sample Mahalanobis distance between two disjoint groups of individuals, I and J:

di, = (M, —m,)'s”™!(m, —m,) (15)
where m is the mean vector of the n; individuals in group J. It should be stressed that matrix S in
equation (15) is the variance matrix of the entire set of n individuals, and not the pooled variance matrix
which is often used to define MDs between two different samples.

The equations above are essentially analogues of equations (1) and (2). If i, is the dummy vector
identifying the n; individuals that belong to group [ and g, = n%i, then (m, —m)" = g'X,. Thus, vector
g, plays the role of vector €; in the MD of individual ¢ to the centre. With similar notation for group j, we
have (rﬁl _IﬁJ)t = (gz _gJ)tXC'

Results similar to those of Sections 3 and 4 follow, since g, ¢ C(I,)" (its elements add to one) but

g,—g, €C(1,)" (its elements add to zero). These results are stated in the following Proposition.

Proposition 6.1 Let X, X,,,, X, and P be defined as in Section 3. Let I be the set of indices identifying

the ny individuals in a given group, i, the corresponding indicator (dummy) vector and g, = n%il. Then,

1. For the MD of group I to the centre, d%, we have:

(a) d? = (TH)ngCgI = (n=1)Pyy,1), where Py ) 1s the mean value of the elements of the submatriz
of P. whose row and column numbers are in set I;
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(b) d? = %—11 cos?(i,, Pei,) = T:T_Il L cos%f}ﬂPJj) =l e R?, where ;;‘ = (In—Pin)i and R? is
the coefficient of determination in the multiple linear regression of the dummy variable i, on the

p variables in X.

(¢c) The mazimum MD of a group I to the center, d2 = "= "="1 s attained iff

n nr

R =1 & i €(CX, & i ecX).

I
2. For the Mahalanobis distance between groups I and J, d%;, we have, with similar notation:

(a) di; = (1) (&, — &,)'Pc(g, — &,) = (n-1) (Prr,n) + Pra.g) — 2Pr,g) where Dy ) is the mean value
of the elements of the submatriz of P, with row numbers in set I and column numbers in set J.

(b) di; = (n—1)2H2L cos? (g, — &, Pc(g, —&,)) = (n—1)ZEL B2 where R3, is the coefficient of

| nrngy g L, mamng
determination of the multiple linear regression of g, —&, on the p variables in X.

¢) The mazimum MD between groups I and J, d2, = (n—1) ( = + = ), is attained i
1J -

ng
R, =1 & g —-§ €CXn < g —§g ¢ CX).
Proof

1. (a) g'P.g, =5 fiPch, with f‘;PCfI giving the sum of the n? values of the principal ny xn; submatrix
I
of P, associated with the rows/columns of individuals in group I.

(b) From the previous point, d7 = (n—1) g P g, = ”n_il ffPCfI. From equation (5), ffPCfI = ;ﬁ[ .

”n—:l cos?(i,, Pei,), which gives the first equation.

Since C(X.) C C(1,)*, it follows from equation (7) that cos?(i,, Pcl,) = cos?(i,,1%)-cos?(i*, Pei,),

defining fj = (In—Pin)i. But, again because C(X.) C C(1,,)*, P.(I,—Pj; )=Pc, hence P.i, =
: o 7

P.i*. Therefore, cos?(i,, Pei)) = cos?(i,, 1) - cos?(i*, P.i*). From equation (5), cos?( I,fj) =

cos?(i,, Peiy). Now iti, = ||i,||> =ny, so d} =

I’y
512 . 7
|I’JH2 = ==L since i has n; elements equal to *—*% and n—n; elements equal to —*, so that
1
I
12 _ nr 2 _ n—1 2(7 g _ n—1 nng 2 /%% “x :
[i7[* = “E(n—ny). Hence, df = = cos?(i,, Pci,) = %= "% cos®(i}, Pciy). Finally, from

equation (8), cos?(I*, Pci*) = R3.
(¢) The maximum value for d? is attained iff R2=1, in which case i, € C(X,,). A reasoning similar to
that used in point 11 of Proposition 3.1 proves that this is equivalent to stating that it € C(Xc).

2. (a) (& —&,)'Pc(g —&,) = g'Pg, + g’fJch, —28'P.g, = ni%ichiI + n%%itJPciJ — 2manichiJ.
As above, the value of an expression such as fiPch is the sum of all elements in the n; X ny

submatrix of P, with row numbers in I and column numbers in J, hence the result.

(b) The first equality results from the point above and equation (5), since ||g,—g,[|* = % In fact,

vector g, — &, has ny elements of value n% and nj elements ;—Jl, with any remaining elements
equal to zero. Since vector g, —g, € C(fn)J-, we have cos?(g, —g,,P.(&, —&,)) = R?,, the
coefficient of determination of the linear regression of vector g, —g, on the p columns of X.

(¢) The maximum value of d%; is achieved if R, = 1, that is if g§, —g, € C(X,,). The other
equivalence follows as in previous cases.

n—ng

—2L is attained if and only if there
I

Point 1c¢) implies that the maximum MD of a group to the center, an
is some set of coefficients {b; }5:0 such that f, = bol, +b1%) + ... + by%,, i.e., iff there is a linear discriminant
axis b1X1 +...+bpX,, which perfectly separates the individuals in group I (with common coefficient 1—by) from

the others (with coefficient —bg), for some by € R. Equivalently, there are two parallel affine hyperplanes in

41
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RP, one of which (with equation by + by 1 + ... + b, 2, = 1) contains the points in group I and the other
(with equation by + by z1 + ... + b, x,, = 0) contains the remaining points.

Similarly, point 2c) states that the maximum MD between two groups, dj; = (n—1):E0L, is attained if
and only if there is a linear discriminant axis b;X; + ... + b,Xp, which perfectly separates the individuals in
group I (with common coefficient 7b0+n—11) and the individuals in group J (with common coefficient fbof%)
from the remaining individuals (with coefficient —by). Equivalently, if n > n,+n,, there are three parallel
affine hyperplanes in R” containing all points: the hyperplane with equation by + by 1 + ... + by, = 1 on
which lie the n; points corresponding to individuals in group I, the hyperplane by +b1 1 +...4+b, 2, = —1 on
which lie the n; points corresponding to individuals in group J, and the hyperplane bg+b; z1+...+b, z, =0

on which lie the remaining n — (ny + ny) points.

7 Discussion

Mahalanobis distances have traditionally been interpreted in the space of individuals, where each axis is
associated with one of p variables, and each observed individual with a point in RP. Here, we argue that
sample-based MDs defined by an n x p data set can be better understood by also considering the alternative
setting of the space of variables, R™, where each axis corresponds to an observed individual and each variable
is represented by a vector. In this alternative setting, Mahalanobis distances of individuals to the centre
depend only on the sample size and the angles formed by each axis with the column-space of the column-
centred data matrix X.. The squared cosines of the angles between the centred canonical vectors for each
axis and C(X,) are a scaled MD, in the interval [0, 1], which can be used as an index for the severity of outliers
that does not depend on any assumptions regarding a probability distribution that may be associated with
the dataset. In turn, MDs between individuals are defined by the sample size and the angle formed by the
difference in the canonical basis vectors associated with the two individuals and the subspace C(X.). This
setting provides geometric insight and explanation for results regarding MDs that are surprisingly recent
(Gath & Hayes, 2006; Pires & Branco, 2018).

None of the above mentioned angles corresponds to what Mardia (1977) called “Mahalanobis angles”.
Mardia defined a matrix G whose generic element is g;; = (X — m)*S™!(X;; — m). In the notation
used here, G = (n—1)P,, though Mardia (1977) did not explore either the fact that matrix ﬁ(} is an
orthogonal projection matrix, or the geometry of MDs in R™. Mardia’s Mahalanobis angles have cosines

9ii__ _ _Pij_ _ (Pc&)"(PcE;)
ViG55 VPiibi P& [Pl
angles appear to be less useful than those described above in understanding the properties of sample-based
MDs. The vectors P.€; and P.€; are directly tied to MDs through norms, since from equations (3) and (4)
we have df = (n-1) [|[Pc&[|* and df; = (n—1)||P.€; — P.&;l>.

The connection between MDs to the centre and the linear regression of the canonical vectors of R”™
on the p variables in the dataset suggests a simple procedure to identify those variables that are mainly
responsible for the value of any given MD, which was discussed and illustrated by examples in Section 5. A
good low-dimensional subset of variables may (if it preserves a large proportion of the original MD) assist
in interpreting outliers. Conceptually, the methodology suggested in Section 5 can be applied to datasets
of any size. From a computational point of view, the limiting factor is the search for the optimal subsets
of predictors in the linear regressions, and therefore the number of variables p in the dataset. For datasets
without too many variables (p up to approximately 30), efficient branch-and-bound algorithms can identify
the best subsets of each cardinality. The eleaps function in subselect package is used in Section 5, but
the leaps function in the R package with the same name (Lumley, 2017) provides an alternative. For
datasets with large p, the simple and well-known stepwise search methods in regressions can drastically
reduce computation times. Any alternative search method for the optimal variable subsets may be used, as
illustrated in Section 5.

Similar procedures may be used to highlight the variables that are chiefly responsible for large MDs
between pairs of individuals. As was seen in Section 4, the starting point in that case is the linear regression
of the difference between the canonical vectors for the two individuals of interest, on the p variables in the
dataset.

and are therefore the angles in R™ between vectors P.€; and P.€;. These
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Inevitably, for datasets with a large number of variables, many different subsets of a given cardinality
may preserve similar proportions of the original MDs, so that low-dimensional interpretations (and possibly
visualizations) of the reasons for an outlying individual are not unique. Alternative sub-optimal subsets may
be of interest. There is scope for future work in exploring this issue.

The methodology proposed in Section 5 may be fully automated if rules are provided to specify which
MDs are of interest and what proportion of the original MD must be retained in a subset. However, sound
data analysis still requires human intervention in making those decisions, by someone familiar with the
problem under consideration. Hence, the procedure indicated here is best considered semi-automated.

The results for MDs associated with individual observations can be generalised to mean vectors of groups
of individuals by replacing the canonical vectors in R”, that correspond to each observation, with the dummy
vectors for the observations in each group, as discussed in Section 6.

Proposition 6.1 has important implications for MDs of individuals to the centre and between individuals,
in data matrices with repeated rows. If there is a group I of n; repeated rows in X, their vector of group
means will coincide with each of those rows. Thus, for any individual i in group I, we have X; = m,, hence:

-1 — 1
n n—ng Lo, (16)

d; = dj <
n nr nr

K3

where M = % is the maximum possible distance to the centre of any non-repeated individual.
Likewise, there is a smaller upper bound than 2(n—1) for the MD between two individuals ¢ and j if other

individuals have rows in the data matrix identical to those of individuals ¢ and/or j. In fact, if individuals ¢

and j belong to groups I and J of n; and n; repeated individuals, then X[; = m, and X[;; = m,. Hence,

1 1
& =d;, < (n—-1)-|—+—]|. 17
i 77 < (n—1) |:nj+nJ:| (17)

For any pair of observations ¢ and j in a tightly-knit group of observations, dfj ~ 0 and d? ~ d?.

2
that case, equation (4) implies that p;; ~ % = pisi =~ pj;. Thus, all elements in the submatrix of P, with
row/column numbers in I will be approximately equal. The closer these similar values are to the maximum

In

group MD to the centre divided by n—1, i.e., to %, the more outlying will be that group of individuals.
I

n

These comments regarding vectors of group means suggest future lines of work to uncover further inter-
esting properties of Mahalanobis distances.

Another interesting line for future work is the study of analogous properties of robust alternatives to
standard Mahalanobis distances, which may also have geometric interpretations in the space of variables.

More generally, the results above confirm that the space of variables is a natural space for understanding
and interpreting statistical methodologies. Its widespread use is to be recommended, given that many statis-
tical concepts have clear geometric meaning in this space. Geometric intuition may assist in understanding
their properties.

A The xploremaha R function

xploremaha <- function(data, rank, plot=TRUE, switch=30, kmin=1, kmax=dim(data) [2]-1,
+ niter=150000, force=FALSE, ...){
require (subselect)

data.maha <- mahalanobis(data, center=apply(data,2,mean), cov=var(data))
n <- dim(data) [1]

p <- dim(data) [2]

if (kmax == p) {kmax <- kmax-1}

valor <- rev(sort(data.maha)) [rank]

valorR2 <- valor*n/(n-1)"2

qual <- which(data.maha == valor)

ei <- function(n,i){rep(c(0,1,0),c(i-1,1,n-i))}
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aux <- lmHmat(ei(n=n,i=qual) ~ . , data=data)
if (p <= switch){
temp <- eleaps(mat=aux$mat, kmin=kmin, kmax=kmax, H=aux$H, r=1, crit="ccri2")

}

else

{

temp <- anneal (mat=aux$mat, kmin=kmin, kmax=kmax, H=aux$H, r=1, crit="ccri2",

+ niter=niter, force=force, cooling=0.01, coolfreq=50)
}

md <- temp$bestvalues*(n-1)-2/n

if (plot){

plot (kmin:kmax, md, pch=16, ylim=c(0,valor), xlab="Number of variables in subset",
+ ylab="Mahalanobis distance (best variable subset)")
text (kmin:kmax, md-valor/30, labels=round(md/valor, d=3))

}

list(bestsets=temp$bestsets, bestvalues=temp$bestvalues)

}
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